671 research outputs found

    High mobilization of CD133+/CD34+ cells expressing HIF-1α and SDF-1α in septic abdominal surgical patients

    Get PDF
    Background: The control of endothelial progenitor cells (CD133+/CD34+ EPCs) migrating from bone marrow to peripheral blood is not completely understood. Emerging evidence suggests that stromal cell-derived factor-1α (SDF-1α) mediates egression of EPCs from bone marrow, while the hypoxia inducible factor (HIF) transcriptional system regulates SDF-1α expression. Our study aimed to investigate the time course of circulating CD133+/CD34+ EPCs and its correlation with the expression of HIF-1α protein and SDF-1α in postoperative laparoscopic abdominal septic patients. Methods: Postoperative patients were divided in control (C group) and septic group (S group) operated immediately after the diagnosis of sepsis/septic shock. Blood samples were collected at baseline (0), 1, 3 and 7 postoperative days for CD133+/CD34+ EPCs count expressing or not the HIF-1α and SDF-1α analysis. Results: Thirty-two patients in S group and 39 in C group were analyzed. In C group CD133+/CD34+ EPCs count remained stable throughout the study period, increasing on day 7 (173 [0-421] /μl vs baseline: P = 0.04; vs day 1: P = 0.002). In S group CD133+/CD34+ EPCs count levels were higher on day 3 (vs day 1: P = 0.006 and day 7: P = 0.026). HIF-1α expressing CD133+/CD34+ EPCs count decreased on day 1 as compared with the other days in C group (day 0 vs 1: P = 0.003, days 3 and 7 vs 1: P = 0.008), while it was 321 [0-1418] /μl on day 3 (vs day 1; P = 0.004), and 400 [0-587] /μl on day 7 in S group. SDF-1α levels were higher not only on baseline but also on postoperative day 1 in S vs C group (219 [124-337] pg/ml vs 35 [27-325] pg/ml, respectively; P = 0.01). Conclusion: Our results indicate that sepsis in abdominal laparoscopic patients might constitute an additional trigger of the EPCs mobilization as compared with non-septic surgical patients. A larger mobilization of CD133+/CD34+ EPCs, preceded by enhanced plasmatic SDF-1α, occurs in septic surgical patients regardless of HIF-1α expression therein. Trial registration: ClinicalTrials.gov no. NCT02589535. Registered 28 October 2015

    Ruling out coronavirus disease 2019 in patients with pneumonia: The role of blood cell count and lung ultrasound

    Get PDF
    Coronavirus disease 2019 (COVID-19) is characterized by a distinctive blood leucocyte pattern and B-lines on lung ultrasound (LUS) as marker of alveolar-interstitial syndrome. We aimed to evaluate the accuracy of blood leucocyte count alone or in combination with LUS for COVID-19 diagnosis. We retrospectively enrolled consecutive patients diagnosed with community acquired pneumonia (CAP) at hospital admission to derive and validate cutoff values for blood cell count that could be predictive of COVID-19 before confirmation by the nucleic acid amplification test (NAAT). Cutoff values, generated and confirmed in inception (41/115, positive/negative patients) and validation (100/180, positive/negative patients) cohorts, were ≤17 and ≤10 cells/mm3 for basophils and eosinophils, respectively. Basophils and/or eosinophils below cutoff were associated with sensitivity of 98% (95%CI, 94–100) and negative likelihood ratio of 0.04 (95%CI, 0.01–0.11). In a subgroup of 265 subjects, the sensitivity of B-line on LUS was 15% lower (p < 0.001) than that of basophils and/or eosinophils below cutoff. The combination of B-lines with basophils and eosinophils below cutoff was associated with a moderate increase of the positive likelihood ratio: 5.0 (95%CI, 3.2–7.7). In conclusion, basophil and eosinophil counts above the generated cutoff virtually rule out COVID-19 in patients with CAP. Our findings can help optimize patient triage pending the NAAT results

    The treatment of peri-implant diseases: A new approach using HYBENX® as a decontaminant for implant surface and oral tissues

    Get PDF
    Background: Peri-implantitis is a pathological condition characterized by an inflammatory process involving soft and hard tissues surrounding dental implants. The management of periimplant disease has several protocols, among which is the chemical method HYBENX®. The aim of this study is to demonstrate the efficacy of HYBENX® in the treatment of peri-implantitis and to compare HYBENX® with other chemical agents used in the surgical treatment of peri-implantitis. Methods: The present study included a population of ten subjects with severe peri-implantitis. The procedure used in the study involves the application of HYBENX® after open-flap debridement. Each patient has been followed for 12 months after a single application of the decontaminant agent. Clinical and radiographical parameters were recorded at baseline, 3 months, and 12 months after treatment completion. Results: At baseline, a mean pocket probing depth (PPD) of 7.3 - 0.5 mm and a mean clinical attachment level (CAL) of 8.8 - 0.8 mm was recorded. An average residual PPD of 4.2 - 0.5 mm and a mean CAL of 5.2 - 0.8 mm were observed after 1 year. Additionally, the average of bone gain was about 3.4 mm, with a mean marginal bone level (MBL) change from 5.8 mm (baseline) to 2.4 mm (12 months). In total, 90% of the treated implants reached the success rate after the 1-year follow-up. Only in one case out of ten treated implants was resolution of the disease not achieved. Conclusion: Clinical improvements highlight that the procedure of open-flap debridement (OFD) + HYBENX® may be considered an effective technique in the treatment of peri-implantitis. From the results obtained, it can be concluded that the use of HYBENX® in the surgical treatment of peri-implantitis is promising. Overall, this protocol demands further studies to better understand the role and potential benefits of HYBENX® in the treatment of peri-implantitis

    Investigations of processing–induced structural changes in horse type-i collagen at sub and supramolecular levels

    Get PDF
    The aim of this work is to evaluate the effects of different extraction and material processing protocols on the collagen structure and hierarchical organization of equine tendons. Wide and Small Angle X-ray Scattering investigations on raw powders and thin films revealed that not only the extraction and purification treatments, but also the processing conditions may affect the extent of the protein crystalline domain and induce a nanoscale “shield effect.” This is due to the supramolecular fiber organization, which protects the atomic scale structure from the modifications that occur during fabrication protocols. Moreover, X-ray analyses and Fourier Transform Infrared spectroscopy performed on the biomaterial sheds light on the relationship between processing conditions, triple helical content and the organization in atomic and nanoscale domains. It was found that the mechanical homogenization of the slurry in acidic solution is a treatment that ensures a high content of super-organization of collagen into triple helices and a lower crystalline domain in the material. Finally, mechanical tensile tests were carried out, proving that the acidic solution is the condition which most enhances both mechanical stiffness and supramolecular fiber organization of the films

    Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy

    Get PDF
    In autumn 2013, the presence of Xylella fastidiosa, a xylem-limited Gram-negative bacterium, was detected in olive stands of an area of the Ionian coast of the Salento peninsula (Apulia, southern Italy), that were severely affected by a disease denoted olive quick decline syndrome (OQDS). Studies were carried out for determining the involvement of this bacterium in the genesis of OQDS and of the leaf scorching shown by a number of naturally infected plants other than olive. Isolation in axenic culture was attempted and assays were carried out for determining its pathogenicity to olive, oleander and myrtle-leaf milkwort. The bacterium was readily detected by quantitative polymerase chain reaction (qPCR) in all diseased olive trees sampled in different and geographically separated infection foci, and culturing of 51 isolates, each from a distinct OQDS focus, was accomplished. Needle-inoculation experiments under different environmental conditions proved that the Salentinian isolate De Donno belonging to the subspecies pauca is able to multiply and systemically invade artificially inoculated hosts, reproducing symptoms observed in the field. Bacterial colonization occurred in prick-inoculated olives of all tested cultivars. However, the severity of and timing of symptoms appearance differed with the cultivar, confirming their differential reaction

    DTI and Myelin Plasticity in Bipolar Disorder : Integrating Neuroimaging and Neuropathological Findings

    Get PDF
    Bipolar disorder (BD) is a major psychiatric illness with a chronic recurrent course, ranked among the worldwide leading disabling diseases. Its pathophysiology is still not completely understood and findings are still inconclusive, though a great interest on the topic has been constantly raised by magnetic resonance imaging, genetic and neuropathological studies. In recent years, diffusion tensor imaging (DTI) investigations have prompted interest in the key role of white matter (WM) abnormalities in BD. In this report, we summarize and comment recent findings from DTI studies in BD, reporting fractional anisotropy as putative measure of WM integrity, as well as recent data from neuropathological studies focusing on oligodendrocyte involvement in WM alterations in BD. DTI research indicates that BD is most commonly associated with a WM disruption within the fronto-limbic network, which may be accompanied by other WM changes spread throughout temporal and parietal regions. Neuropathological studies, mainly focused on the fronto-limbic network, have repeatedly shown a loss in cortical and subcortical oligodendrocyte cell count, although an increased subcortical oligodendrocyte density has been also documented suggesting a putative role in remyelination processes for oligodendrocytes in BD. According to our review, a greater integration between DTI and morphological findings is needed in order to elucidate processes affecting WM, either glial loss or myelin plasticity, on the basis of a more targeted research in BD

    Bioisosteric Modification of To042: Synthesis and Evaluation of Promising Use-Dependent Inhibitors of Voltage-Gated Sodium Channels

    Get PDF
    Three analogues of To042, a tocainide-related lead compound recently reported for the treatment of myotonia, were synthesized and evaluated in vitro as skeletal muscle sodium channel blockers possibly endowed with enhanced use-dependent behavior. Patch-clamp experiments on hNav1.4 expressed in HEK293 cells showed that N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine, the aryloxyalkyl bioisostere of To042, exerted a higher use-dependent block than To042 thus being able to preferentially block the channels in over-excited membranes while preserving healthy tissue function. It also showed the lowest active transport across BBB according to the results of P-glycoprotein (P-gp) interacting activity evaluation and the highest cytoprotective effect on HeLa cells. Quantum mechanical calculations and dockings gave insights on the most probable conformation of the aryloxyalkyl bioisostere of To042 in solution and the target residues involved in the binding, respectively. Both approaches indicated the conformations that might be adopted in both the unbound and bound state of the ligand. Overall, N-[(naphthalen-1-yl)methyl]-4-[(2,6-dimethyl)phenoxy]butan-2-amine exhibits an interesting toxico-pharmacological profile and deserves further investigation

    Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis

    Get PDF
    Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species
    • …
    corecore